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Transient and steady-state heat transfer in multilayer media is investigated by the thermal quadrupole method.
A semi-analytical solution is proposed for the cases of layers parallel or orthogonal to the main heat-flux di-
rection. The principal application is the study of the effect of the brazing metal used in stratified steel moulds.

Introduction. Thanks to technological improvements, the use of stratified media has become more and more
important. A better understanding of their behavior is needed. Although there is an enormous number of mechanical
studies, only a few authors took an interest in heat-transfer modeling and most often the study was limited to the case
of two layers. As far as the heat transfer is concerned, the main goal is to know if a spatially periodic heterogeneous
medium could be represented in a suitable way by a homogeneous medium and in this case to determine the equiva-
lent properties.

The first part of the study presents the modeling of the multilayer to obtain its thermal behavior in terms of
temperature and heat flux. Two configurations are considered: layers parallel and orthogonal to the main heat-flux di-
rection. Then the real case of stratified moulds used in rapid tooling is investigated. Results for the steady state, in-
volving thermal resistance, and for the transient case are presented and discussed.

Description of the Model. The model proposed here is based on the quadrupole formulation [1, 2]. This tech-
nique has been developed and has been widely used in the last few years [3, 4], even in the case of transient coupled
radiative-conductive heat transfer with anisotropic scattering [5]. This method is commonly used to solve ordinary dif-
ferential equations in the Laplace domain. It provides a transfer matrix for the medium that linearly links the input
temperature-heat flux column vector at the front side and the output vector at the back side. This model gives results
in the Laplace domain. A numerical algorithm (Stehfest [6] or de Hoog [7]) permits one to obtain the temperature and
the heat flux as functions of time.

A short presentation of this method is proposed below (for further details and explanations in the most com-
plicated cases, see [1, 2, 5]). Let us assume a one-dimensional Cartesian coordinate system. The transient heat-transfer
equation is given by

∂2
T

∂x
2  = 

1

α
 
∂T (x, t)

∂t
 .

Application of the Laplace transform gives

d
2θ (x, p)

dx
2  = 

p

α
 θ (x, t) .

The heat flux in the image domain is

φ (x, p) = − λS 
dθ (x, p)

dx
 .
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The last two equations can be written in a matrix formulation:

d
dx

 




θ (x, p)
φ (x, p)




 = 








0

− 
λSp

α
     

− 
1
λS
0







 




θ (x, p)
φ (x, p)




 .

This can be summarized in the form

dX
__

dx
 = − MX

__
 .

The solution of this equation is

X
__

 (x, p) = exp (− Mx) X
__

 (0, p) ,

where

exp (− Mx) = 




cosh (√p ⁄ α  x)
− λ √p ⁄ α  S sinh (√p ⁄ α  x)

     
− sinh (√p ⁄ α  x) ⁄ (λ √p ⁄ α  S)

cosh (√p ⁄ α  x)



 .

As a result of this, the quadrupole formulation can be written:





θ (0, p)
φ (0, p)




 = 





cosh (√p ⁄ α  x)
λ √p ⁄ α  S sinh (√p ⁄ α  x)

     
sinh (√p ⁄ α  x) ⁄ (λ √p ⁄ α  S)

cosh (√p ⁄ α  x)



 




θ (x, p)
φ (x, p)




 .

First configuration. In this case, the main direction of the heat flux is orthogonal to the layers, as schemati-
cally presented in Fig. 1a. Let us consider a simple medium composed of two layers (Fig. 2a), which are represented
by matrices A and B:

A = 







cosh u

∆ sinh u
     

sinh u
∆

cosh u







 , (1)

B = 







cosh v

δ sinh u
     

sinh v
δ

cosh v







 , (2)

Fig. 1. Scheme of the medium in the case of orthogonal (a) and parallel (b)
heat transfer.
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where

u = kAeA ,   ∆ = λAkASA ,   kA = √p ⁄ αA ,

v = kBeB ,   δ = λBkBSB ,   kB = √p ⁄ αB .

To obtain the equivalent matrix M that models the thermal behavior of the heterogeneous medium, the product
of the two matrices A and B must be obtained:

M = 












cosh u cosh v + 
δ
∆

 sinh u sinh v

∆ sinh u cosh v + δ cosh u sinh v

     

1
δ

 cosh u sinh v + 
1
∆

 sinh u cosh v

∆
δ

 sinh u sinh v + cosh u cosh v












 . (3)

Now a multilayer medium is investigated. The equivalent matrix N of this assembly is given by the following
formula:

N = M
n
A . (4)

In order to evaluate Mn, it is of interest to determine the eigenvalues λi and the eigenvectors Vi(xi, yi) of the matrix
M. The explicit expression of the matrix N of the multilayer medium is 

N = PD
n
P
−1

A (5)

or

N = 
1

x1y2 − x2y1
 







x1

y1

   
x2

y2







 







λ1
n

0
     

0

λ2
n







 







y2

− y1

     
− x2

x1







 







a

c
     

b

d







 , (6)

where

Fig. 2. The bilayer medium in the case of orthogonal (a) and parallel (b) heat
transfer.
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xi = 
1
δ

 cosh u sinh v + 
1
∆

 sinh u cosh v ,

yi = λi − cosh u cosh v − 
δ
∆

 sinh u sinh v ,

λi = cosh u cosh v + 




δ
2∆

 + 
∆
2δ




 sinh u sinh v %

% 



sinh

2
 u sinh

2
 v 



1 + 





δ
2∆

 + 
∆
2δ





2


 + 





δ
∆

 + 
∆
δ



 cosh u cosh v sinh u sinh v





1 ⁄ 2

 .

Second configuration. In this case, the main direction of the heat flux is parallel to the layers, as shown in
Fig. 1b.

Let us consider a simple medium composed of two layers (Fig. 2b). Two matrices (YA and YB respectively)
that are called admittance matrices and that represent each layer must be considered:

YA = 
1

(sinh u) ⁄ ∆
 


cosh u
− 1

     − 1
cosh u




 , (7)

YB = 
1

(sinh v) ⁄ δ
 


cosh v
− 1

     − 1
cosh v




 . (8)

The relations between the transfer matrices A and B and the admittance matrices YA and YB are seen from Table 1.
To obtain the equivalent admittance matrix YM for modeling the thermal behavior of the heterogeneous me-

dium, the sum of the two admittance matrices YA and YB must be found:

YM = 













(cosh u sinh v) ⁄ δ + (cosh v sinh u) ⁄ ∆
sinh u sinh v ⁄ (∆δ)

− 
(sinh v) ⁄ δ + (sinh u) ⁄ ∆

sinh u sinh v ⁄ (∆δ)

     

− 
(sinh v) ⁄ δ + (sinh u) ⁄ ∆

sinh u sinh v ⁄ (∆δ)

(cosh u sinh v) ⁄ δ + (cosh v sinh u) ⁄ ∆
sinh u sinh v ⁄ (∆δ)













 , (9)

YM = 











∆ coth u + δ coth v

− ∆ sinh v − δ sinh u
sinh u sinh v

     

− ∆ sinh v − δ sinh u
sinh u sinh v

∆ coth u + δ coth v










 . (10)

Then the transfer matrix M can be written as 

TABLE 1. Relation between the Transfer (N) and Admittance (YN) Matrices

N YN




a
c
  b
d




1
b

 




d
−1

  
−1
a




1
m

 




−s

m2−ls
   
−1

−l








l
r
  m

s



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M = 













∆ cosh u sinh v + δ sinh u cosh v
∆ sinh v + δ sinh u

(∆ cosh u sinh v + δ sinh u cosh v)2 − (∆ sinh v + δ sinh u)2

sinh u sinh v (∆ sinh v + δ sinh u)

     

sinh u sinh v
∆ sinh v + δ sinh u

∆ cosh u sinh v + δ sinh u cosh v

∆ sinh v + δ sinh u













 . (11)

Now a multilayer medium is investigated. The equivalent admittance matrix YN of this assembly is given by
the following formulas:

YN = (n + 1) YA + nYB , (12)

YN = 











(n + 1) ∆ coth u + nδ coth v

− (n + 1) ∆ sinh v − nδ sinh u
sinh u sinh v

     

− (n + 1) ∆ sinh v − nδ sinh u
sinh u sinh v

(n + 1) ∆ coth u + nδ coth v










 . (13)

Then the expression for the transfer matrix N (obtained from the admittance matrix YN as explained previously) is

N = 




n11
n21

   
n12
n22




 , (14)

where

n11 = 
(n + 1) ∆ cosh u sinh v + nδ sinh u cosh v

(n + 1) ∆ sinh v + nδ sinh u
 ,

n12 = 
sinh u sinh v

(n + 1) ∆ sinh v + nδ sinh u
 ,

n21 = 




(n + 1) ∆ cosh u sinh v + nδ sinh u cosh v




2
 − 


(n + 1) ∆ sinh v + nδ sinh u




2

sinh u sinh v 

(n + 1) ∆ sinh v + nδ sinh u




 ,

n22 = n11 .

Application to a Real Case: Stratified Moulds. In rapid prototyping, steel layers are brazed together to ob-
tain stratified moulds. In this case, the layer A is steel and the layer B is the brazed metal. It is interesting to know
the thermal behavior of the mould for several reasons. For instance, the quality of the piece made with this mould or
the lifetime of the mould highly depends on the temperature and the heat flux in the mould. The reference case is the
mould made of steel only and the purpose is to know whether the spatially periodic heterogeneous medium, i.e., the
brazed layers, could be represented in a suitable way by a homogeneous medium and if this is the case to determine
the equivalent properties. The geometrical and thermophysical properties of the multilayer medium used for the simu-
lations are given in Tables 2 and 3. 

Results: Temperature and heat flux within the multilayer medium. The steady-state case corresponds to the
limit of the previous expressions when p tends to zero. To validate the model based on the quadrupole formulation pre-
sented earlier, the terms of matrix M (Eqs. (3) and (11)) must be considered when p tends to zero.

The elements of matrix in Eq. (3) are presented as

m11 = cosh u cosh v + 
δ
∆

 sinh u sinh v  D
p→0

  1 ,
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m22 = 
∆
δ

 sinh u sinh v + cosh u cosh  v  D
p→0

  1 ,

m12 = 
1
δ

 cosh u sinh v + 
1
∆

 sinh u cosh v  D
p→0

  v ⁄ δ + u ⁄ ∆  D
p→0

  
eA

λASA
 + 

eB

λBSB
 ,

m21 = ∆ sinh u cosh v + δ cosh u sinh v D ∆u + δv  D
p→0

  (ρAcASAeA + ρBcBSBeB) p  D
p→0

  0

and for Eq. (11) as

m11 = 
∆ cosh u sinh v + δ sinh u cosh v

∆ sinh v + δ sinh u
  D
p→0

  1 ,

m22 = 
∆ cosh u sinh v + δ sinh u cosh v

∆ sinh v + δ sinh u
  D
p→0

  1 ,

m12 = 
sinh u sinh v

∆ sinh v + δ sinh u
  D
p→0

  
eAeB

λASAeB + λBSBeA
  D
p→0

  
1

λASA
 ⁄ eA + λBSB

 ⁄ eB
 ,

m21 = 
(∆ cosh u sinh v + δ sinh u cosh v)2 − (∆ sinh v + δ sinh u)2

sinh u sinh v (∆ sinh v + δ sinh u)
  D
p→0

  0 .

Then θS = θE + m12ϕE for p approaching zero takes the following form:

 θS = θE + 




eA

λASA
 + 

eB

λBSB




 φE   in case  1 ,

θS = θE + 

1 ⁄ (λASA

 ⁄ eA + λBSB
 ⁄ eB)




 φE   in case  2 ,

where

θE = θ (x = 0) ,   θS = θ (x = e = eA + eB) ,   φE = φ (x = 0) ,   φS = φ (x = e = eA + eB) .

These expressions represent the well-known relation for the steady-state case ∆θ = Rϕ, where R is the equivalent resis-
tance of the medium (R = RA + RB in case 1 and R = 1 ⁄ (1 ⁄ RA + 1 ⁄ RB) in case 2). For a multilayer, the expressions
become 

TABLE 2. Values of the Geometrical Parameters

Material
e, m S, m2

Case 1 Case 2 Case 1 Case 2

Steel 6⋅10−3 4⋅10−1 2.4⋅10−1 2.4⋅10−3

Brazing metal 4⋅10−7 4⋅10−1 2.4⋅10−1 1.6⋅10−7

TABLE 3. Values of the Thermophysical Parameters

Material λ, W⋅m–1⋅K–1 α, m2⋅sec–1
1 ⁄ √α , m−1⋅sec1 ⁄ 2

Steel 15 3.98⋅10–6 501.198

Brazing metal 370 1.0614⋅10–4 97.065
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θS = θE + 



(n + 1) 

eA

λASA
 + n 

eB

λBSB




 φE   in case  1 ,

θS = θE + 

1 ⁄ ((n + 1) λASA

 ⁄ eA + nλBSB
 ⁄ eB)




 φE   in case  2 .

Numerical results for the thermal resistance are presented in Table 4. The media are composed of ten or
twenty brazed layers (eleven or twenty-one steel layers). The reference case of a bilayer is also given in the table.
It must be emphasized that the absolute differences ∆R = Rs—R between the equivalent thermal resistance of the
multilayer (steel and brazing) R and the thermal resistance of a medium without brazing (steel only) Rs are very
small (about 10–6 K⋅W–1 in case 1 (orthogonal heat transfer) and 10–3 K⋅W–1 in case 2 (parallel heat transfer)).
This is essentially due to the fact that the thermal resistance of the steel layer (1.6⋅10–3 K⋅W–1) is very high as
compared to the resistance of the brazing (4.5⋅10–9 K⋅W–1). The relative differences are about 10–5 and 10–3 in
cases 1 and 2, respectively.

As a consequence, for a given difference of temperatures, the heat flux through the media composed of the
multilayer (steel and brazing) is quite the same as in the case without brazing layers (this is more true when the heat
transfer is orthogonal to the layers).

A further detail appears when the ratio of the thermal resistances of the multilayer and bilayer is considered:
the value of this ratio is very close to the number of layers involved in the medium (Table 5). As a consequence,
knowledge of the thermal resistance of a bilayer and the number of layers of the multilayer allows one to get easily
and quickly a good and realistic idea of what will happen in the case of the multilayer.

Then the transient case is investigated. Let us consider the first configuration where the main direction of the
heat flux is orthogonal to the layers. It is of importance to note our application in order to simplify the expressions
of the matrices. Indeed, the layer B is very thin compared to the layer A and, as a consequence, expression (2) for
the transfer matrix can be simplified in the following manner:

B = 




cosh v

δ sinh v
     

(sinh v) ⁄ δ
cosh v




 C 





1

(ρBcBeBSB) p
     

eB
 ⁄ (λBSB)

1



 = 





1
CBp

     
RB
1



 .

In the case of a bilayer medium, expression (3) for the transfer matrix becomes

TABLE 4. Equivalent Thermal Resistance for Multilayer and Steel Medium without Brazing

Resistance
characteristic

n
10 20 Bilayer

Orthogonal Parallel Orthogonal Parallel Orthogonal Parallel

R, K⋅W–1 1.83334⋅10–2 1.00859 3.50001⋅10–2 5.28273⋅10–1 1.66667⋅10–3 1.10929⋅10

Rs, K⋅W–1 1.83344⋅10–2 1.01004 3.50022⋅10–2 5.29067⋅10–1 1.66678⋅10–3 1.11104⋅10

∆R, K⋅W–1 1.06607⋅10–6 1.44658⋅10–3 2.13213⋅10–6 7.93757⋅10–4 1.06607⋅10–7 1.75009⋅10–2

∆R ⁄ Rs 5.81455⋅10–5 1.43220⋅10–3 6.09142⋅10–5 1.50030⋅10–3 6.39597⋅10–5 1.57519⋅10–3

TABLE 5. Ratios of Thermal Resistances of Multilayer and Bilayer

Resistance
characteristic

n

10 20

Orthogonal Parallel Orthogonal Parallel

R ⁄ Rbi 1.0999997297⋅10 1.099835826⋅10 2.0999997297⋅10 2.0998358255⋅10

Rs ⁄ Rbi 1.0999933338⋅10 1.0999933338⋅10 2.0999933338⋅10 2.09999⋅10

Difference –6.3959527120⋅10–5 1.5750824640⋅10–3 –6.3959527122⋅10–5 1.57508⋅10–3

Relative difference –5.8145377027⋅10–6 1.4319018267⋅10–4 –3.0457014359⋅10–6 7.50042⋅10–5
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M = 




cosh u + (ρBcBeBSB) p (sinh u) ⁄ ∆
∆ sinh u + (ρBcBeBSB) p cosh u

     
(eB

 ⁄ (λBSB)) cosh u + (sinh u) ⁄ ∆
(eB

 ⁄ (λBSB)) ∆ sinh u + cosh u




 ,

i.e.,

M = 











1 + 
ρBcBSB

ρAcASA
 
eBeA

αA
 p

(ρBcBeBSB + ρAcAeASA) p
     

eB
 ⁄ (λBSB) + eA

 ⁄ (λASA)
ρAcASA

ρBcBSB
 
eBeA

αB
 p + 1










 C 





1

(CB + CA) p
     

RB + RA
1




 .

The eigenvalues of the matrix are λ1 = 1 + √RCp  and λ2 = 1 − √RCp  with R = RA + RB and C = CA + CB. Two eigen-

vectors are (√RCp ; Cp), (√RCp ; —Cp).
It is now easy to evaluate the general formula of the matrix Mn for transient modeling of the multilayer:

M
n
 = 

1
2

 




1 ⁄ (Cp)
1 ⁄ √RCp

     
1 ⁄ (Cp)

− 1 ⁄ √RCp




 




(1 + √RCp )n

0
     

0

(1 − √RCp)n



 




Cp

Cp
     

√RCp

− √RCp




 ,

M
n
 = 

1
2

 




(1 + √RCp )n + (1 − √RCp )n

√Cp ⁄ R  (1 + √RCp )n − (1 − √RCp )n
     

√R ⁄ (Cp)  (1 + √RCp )n − (1 − √RCp )n
(1 + √RCp )n + (1 − √RCp )n




 ,

M
n
 = 















∑ 
k even

n

 Cn
k
 (RCp)k

 ⁄ 2

Cp  ∑ 
k odd

n

 Cn
k
 (RCp)(k−1) ⁄ 2

     

R  ∑ 

k odd

n

 Cn
k
 (RCp)(k−1) ⁄ 2

∑ 
k even

n

 Cn
k
 (RCp)k

 ⁄ 2















 .

The explicit expressions of the transfer matrix 

M
n
 = 








m11
n

m21
n    

m12
n

m22
n







 = 








P1
n

CpP2
n     

RP2
n

P1
n








for n = 10 and n = 20 are given in Table 6. Table 7 summarizes the expressions of the heat flux and the temperature
as functions of the transfer-matrix elements





θ (x = 0, p)
φ (x = 0, p)




 = 





θE
φE




 = 



a
c
   

b
d



 




θS

φS




 = 



a
c
   

b
d



 




θ (x = e, p)
φ (x = e, p)





for several boundary conditions (Dirac heat flux, insulated back side, imposed or Heaviside temperature, etc.). For in-
stance, the heat flux for a multilayer medium with the Heaviside temperature at the front side and the imposed tem-
perature at the back side is given by the following formulas:

φS = 
1

bp
 = 

1

Rp  ∑ 

k odd

n

 Cn
k
 (RCp)(k−1) ⁄ 2

 ,   φE = 
d
bp

 = 

∑ 
k even

n

 Cn
k
 (RCp)k

 ⁄ 2

Rp  ∑ 

k odd

n

 Cn
k
 (RCp)(k−1) ⁄ 2

 = dφS .
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Then a numerical algorithm permits one to obtain the heat flux as a function of time.
Let us consider the second example. The temperature of the insulated back side of a multilayer medium with

the Dirac heat flux at the front side is given by the formula

θS = 
1
c

 
1

Cp  ∑ 

k odd

n

 Cn
k
 (RCp)(k−1) ⁄ 2

 .

This gives for a multilayer consisting of eleven steel layers (see Table 6)

θS = 
1

c
 = 

1

Cp (10 (1 + R
4
C

4
p

4) + 120 (RCp + R
3
C

3
p

3) + 252R
2
C

2
p

2)
  C
p→0

  
1

10Cp (1 + 12RCp)
 .

In this case, it is possible to obtain an analytical approximate expression for the transient temperature (it could be use-
ful, for instance, for parameter estimation or in optimization):

θS C 
1

10Cp
 − 

12R
10

 
1

1 + 12RCp
 → θS (t) C 

1
10C

 (H (t) − exp (− t ⁄ 12RC)) .

Conclusions. Heat transfer in the case of a multilayer medium under several boundary conditions is investi-
gated. The study is not limited to the case of two layers: an explicit matrix is given in the general case. Then the
modeling is used to treat the case of a stratified steel mould (with ten or twenty brazed layers). Not only steady-state
but also transient results are obtained. The absolute differences between the equivalent thermal resistance of the multi-
layer and the thermal resistance of the medium without brazing are very small (for heat transfer orthogonal to the lay-
ers, they are smaller than for parallel ones). The general formula for the matrix is then established in the case of
brazed layers to obtain the transient behavior of the multilayer.

TABLE 6. Expressions for Elements of the Transfer Matrix in the Transient Case (ξ = RCp)

Polynomial
n

10 20

P1
n (1 + ξ5) + 45 (ξ + ξ4) + 210 (ξ2 + ξ3)

(1 + ξ10) + 190 (ξ + ξ9) + 4845 (ξ2 + ξ8) +
+ 38760 (ξ3 + ξ7) + 125 970 (ξ4 + ξ6) + 184 756ξ5

P2
n 10 (1 + ξ4) + 120 (ξ + ξ3) + 252ξ2 20 (1 + ξ9) + 1140 (ξ + ξ8) + 15  504 (ξ2 + ξ7) +

+77 520 (ξ3 + ξ6) + 167 960 (ξ4 + ξ5)

TABLE 7. Heat Flux and Temperature as Functions of the Transfer-Matrix Elements for Different Boundary Conditions

Boundary conditions
φE θE φS θS

Front side Back side

Dirac heat flux Insulated 1
a
c

0
1
c

Heaviside heat flux Insulated
1
p

a
cp

0
1
pc

Heaviside heat flux Imposed temperature
1
p

b
dp

1
dp

0

Heaviside temperature Imposed temperature
d

bp
1
p

1
bp

0

Heaviside temperature Insulated
c

ap
1
p

0
1

ap
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NOTATION

A, B, M, N, Y, matrices; a, b, c, d, elements of matrices; cA and cB, specific heat capacities; e, thickness; H,
Heaviside function; n, number of brazed layers; p, Laplace variable; R, equivalent resistance; S, surface area; T, tem-
perature; t, time; Vi, eigenvector; x, Cartesian coordinate; α, thermal diffusivity; θ, temperature image; λ, thermal con-
ductivity; λi, eigenvalue; ρA and ρB, densities of layers A and B; φ, heat flux in the image domain. Subscripts: A and
B, layers A and B; bi, bilayer; E, at x = 0; S, at x = eA + eB; s, steel.
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